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ABSTRACT

Network simulation is used widely in network research
to test new protocols, modifications to existing protocols
and new ideas. The tool used in many cases is ns-2.
The nature of the ns-2 protocols means that they are
often based on theoretical models that might not behave
in the same way as real networks. This paper presents
the Network Simulation Cradle which allows real world
network stacks to be used in a wrapper that allows
the stacks protocols to be used in the ns-2 network
simulator. The network stacks from the open source
operating systems Linux, FreeBSD and OpenBSD are
included in the simulation cradle as well as a stack
designed for embedded systems, lwIP. Our results show
that ns-2’s TCP implementations do not match observed
behaviour from real machines in some respects and using
the Network Simulation Cradle produces results closer
to real world network stacks.

1 INTRODUCTION

Testing, developing and evaluating network protocols is
often done with the help of network simulators. Simu-
lation is used because it allows experiments to be un-
dertaken even if the network hardware is not available
or physically cannot be constructed in the real world.
For example there is practically no limit to the band-
width and delay which can be specified for a simulated
link. As networks continue to grow more complex, the
need for network simulation increases. To predict the
expected performance of complex networks and to un-
derstand the interactions of protocols, network designers
and researchers use simulation.

The network simulator ns-2 is widely used in the net-
work research field and has had its models validated by
its creators (Information Science Institute (ISI) 2004).
However the models of protocols used by ns-2, specifi-
cally Transmission Control Protocol (TCP), are heavily

abstracted. Heidemann, Mills, and Kumar (2001) re-
port that the one-way TCP models included in ns-2
model a simplified protocol supporting unidirectional
data transfer without message fragmentation and do
not attempt to model any particular TCP implemen-
tation or specification. These models suffice for many
situations but no do not reflect how real TCP imple-
mentations perform.

To illustrate the difference between real TCP im-
plementations and ns-2 TCP models, consider table 1
which shows the goodput recorded for varying operat-
ing systems running on a test network, compared to the
same situation simulated with ns-2 TCP agents. The
data was collected by running throughput tests on an
isolated test network which used FreeBSD Dummynet
(Rizzo 1997) to limit bandwidth and introduce loss. A
simple dumbbell topology is used with uniform random
packet loss of 5% set on one of the bottleneck routers.
The bottleneck link has a latency of 100ms and a band-
width of 2Mb/s. The queue size of both routers is set
to 10 packets. All tests were run 100 times. The mean
goodput is displayed in the table. Goodput is the amount
of data successfully read from a socket at the end of a
TCP connection.

The wide variation of goodputs recorded on the
test network shows how real world TCP implemen-
tations differ under the same circumstances. All the
machines tested had delayed acknowledgements turned
on. FreeBSD should be compared to the Newreno agent
with delayed acknowledgements: ns-2 gets 60% of the
goodput recorded with FreeBSD 5.2.1 machines. Both
Linux and OpenBSD use TCP selective acknowledge-
ments (SACK) and delayed acknowledgements and both
get very different goodput. The measured goodput
for comparible ns-2 TCP implementations are 43% of
Linux’s goodput and 79% of OpenBSD’s. Further dis-
cussion of this experiment can be found in section 4.

Table 1 shows that while ns-2 stack models produce
results that are close to the same range as actual stacks
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they do not match particular stacks closely. If accurate
simulations matching real world stacks is required, new
models are necessary.

Table 1: Mean Goodput with 5% Bidirectional Loss

TCP Implementation Goodput (kb/s)

ns-2: Sack1/Sack1-DelAck 88.9
Linux 2.4.27 208.6

ns-2: Newreno/DelAck 96.9
Linux 2.4.27 No SACK 193.7
FreeBSD 5.2.1 162.8
OpenBSD 3.5 113.2

This paper addresses the need for more accurate
network simulation. Abstraction of protocol implemen-
tations are used in network simulators for a few reasons.
Efficiency is important. Writing complex models of pro-
tocols is time consuming and prone to error. Even with
a thorough implementation, validation of the model is
still required. Each real world network stack exhibits
differing behaviour as the results in table 1 show. Man-
ually writing code to model each stack in simulation,
possibly each version of each stack, is not feasible.

We present a way to use the protocol implemen-
tations from open source operating systems in ns-2.
Although we present our approach for ns-2 it is largely
independent of the simulator and should be able to be
integrated into other network simulators without any
changes to the core system. The network stacks of
the operating systems Linux 2.4.26 to 2.4.28, FreeBSD
5.1 to FreeBSD 5.3 and OpenBSD 3.5 are included in
what is known as the Network Simulation Cradle. The
embedded TCP/IP stack lwIP (Dunkels et al. 2004) is
also included. The Network Simulation Cradle, or NSC,
includes code for each stack to support the stack out-
side of its native environment or operating system. To
ease integration and reduce error, the only modifications
made to the stack are done programmatically.

This approach has several benefits. NSC can be
used for its TCP implementations that perform similar
to real machines. The NSC network stacks are a near
drop-in replacement for the current TCP implementa-
tions in ns-2. For many simulations it is possible to
substitute the original ns-2 TCP agent with an NSC
TCP agent without any other changes required. The
extra functionality available in a full TCP implemen-
tation can be used; for example simulations such as
GnutellaSim (He et al. 2003) require actual data sent
over the TCP connection which is not available in the
TCP models present in ns-2. ns-2’s TCP models also do
not include some basic TCP features such as a dynamic
receivers advertised window.

Validation of TCP using NSC is covered in section
4. An overview of the architecture and design of NSC

is described in section 3. CPU and memory performace
is dicussed in section 5. Approaches using real world
network code in simulation and in capacities similar to
this project are discussed in the next section.

2 RELATED WORK

We use real world network code in simulation to increase
accuracy. Other approaches exist that use real network
stacks. Alpine (Ely, Savage, and Wetherall 2001) and
ENTRAPID (Huang, Sharma, and Keshav 1999) use
BSD network stacks in user space to facilitate protocol
development. The BSD Network Stack Virtualization
(Zec and Mikuc 2003) project allows high-bandwidth
real-time simulation. NCTUns (Wang et al. 2003) al-
lows real network stacks to be used for simulation.
Bless and Doll (2004) integrate the FreeBSD network
stack into the simulator OMNET++. These projects
are discussed in the following sections.

2.1 ENTRAPID

ENTRAPID (Huang, Sharma, and Keshav 1999) is a
protocol development environment designed to provide
some of the features of general-purpose network simu-
lation. ENTRAPID is a process running in user space
supportingmultiple virtualised networking kernels. This
is a set of network stacks that are managed to provide
an abstraction of a real-time simulator. Each stack is
modified 4.4 BSD network code.

Modifying the network stacks to allow multiple
stacks to run in the same user space process indepen-
dently is performed by hand modifications to the stack.
All non-local references are found and mapped through
a indirection table to an appropriate shared resource.

ENTRAPID is a powerful user-space development
environment but suffers from the problem of keeping
it up to date, due to the extensive hand modifications
necessary for virtualisation. ENTRAPID is now part
of a commercial project and is not publicly available.

2.2 Alpine

Alpine (Ely, Savage, and Wetherall 2001) is aimed at
protocol development in user space like ENTRAPID,
but is a simpler system. The Alpine project moved the
FreeBSD 3.3 network stack into user space with few
hand modifications and created a compatibility layer
that allowed the stack to be used as a user-space network
stack providing the traditional BSD sockets API. The
process Alpine used to move the network stack to user
space is very similar to that used in this project. It
does not provide any way for multiple instances of the
stack to run concurrently. Alpine does not provide any
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way to be used with simulation, it is only used for
protocol development. Alpine has not been updated
from FreeBSD 3.3.

2.3 BSD Network Stack Virtualization

Zec (2003) modified the FreeBSD 4.7 operating system
kernel to allow multiple network stacks to run alongside
each other on the same system. This work was then
extended to allow simulation to use the virtual network
stacks. Zec and Mikuc (2003) present a real-time net-
work simulator capable of operating at gigabit speeds.
Their work allows applications to run unmodified and
interact with a particular network stack instance cor-
rectly. They also modify the kernel so each virtual
network stack can be limited in CPU usage to stop run-
away processes from starving the system of resources.

The host system is able to be configured in such a
way that packets that enter from an outside network are
routed through the simulated network in any way. This
means using the existing FreeBSD emulation capabilities
of Dummynet (Rizzo 1997) is possible. The simulator
can be combined with a real network seamlessly.

Zec and Mikuc do not address the possibility of
adding error into the network stackduring their extensive
modifications. Nor do they validate the system, though
they do note that testing is required.

Detailed statistics gathering with this project is
hard. Obtaining information other than goodput over
time generally involves modifying the kernel and in-
stalling the new kernel. This is not specific to the
virtualisation simulator, most real time simulators or
emulators face this same problem.

2.4 NCTUns

NCTUns 1.0 (Wang et al. 2003) is a simulator which
attempts to make use of a real world network stack
for simulation, much like this project. NCTUns uses
the local machines network stack via a tunnel network
interface. Tunnel devices are available on most UNIX
machines and allow packets to be written to and read
from a special device file. To the kernel, it appears as
though packets have arrived from the link layer when
data is written to the device file. This means the packet
will go through the normal TCP/IP processing. When
a packet is read from the tunnel device, the first packet
in the tunnel interfaces output queue is copied to the
reading application.

One of the advantages of this approach is that it
allows real-life UNIX application programs to run on
simulated nodes in the network because the system
default UNIX POSIX API is available.

However, NCTUns has some disadvantages. First,
it needs kernel modifications for all machines it runs
on. The kernel needs to be patched to support changes
to timing, the scheduler, and other facilities. This has
three major ramifications: hand changes to the protocol
code means that results produced are less convincing,
as it is hard to know whether these changes will affect
results. To use NCTUns, the user needs full administra-
tive privileges to install the new patched kernel, which
is not always an option, especially in a student labora-
tory setting where access may be restricted. The code
also needs to be maintained for all operating systems it
runs on. Statistics gathering faces the same problems
as detailed in section 2.3.

A separate computer is needed for every different
version of every operating system that is to be simulated.
While simulating, computers cannot be used for other
activities for fear of affecting the simulation results. This
means larger simulations could require many machines;
the resource requirements are higher than a simulation
run in ns-2 would be.

2.5 OMNET++ and FreeBSD

Bless and Doll (2004) describe integration of the
FreeBSD TCP/IP stack into the simulator OMNET++
(Varga 1999). Their reasons for using a real world
TCP/IP stack is that they wished to avoid “possible
implementation errors and costly validation tests” and
OMNET++ lacked a validated TCP model.

Bless and Doll describe how the many timer events
generated by a real stack are a performance bottleneck
and propose a solution to solve this problem. They
also manage the routing table in the FreeBSD stack and
allow routing packets. Neither the timer performance
changes or the routing table updates are implemented
in NSC.

To allow multiple instances of the FreeBSD TCP/IP
stack to work in OMNET++ the global variables in the
code were changed by hand. The authors found that
a simple search and replace was not enough to handle
the complexities of modifying global variables. They
conclude a Perl script to modify the source program-
matically is an area of further research and modify the
global variables and their references by hand. Further
discussion of the problem of multiple instances, and our
general solution to solve it, can be found in section 3.3.

Manually changing source code means that keeping
this project up to date with future FreeBSD releases
is a time consuimg process. The project integrates
FreeBSD 4.9 which is already a major version behind
the current stable version of FreeBSD in 2005. Also, the
authors only perform a minimal amount of validation
because “we did not modify the TCP code of FreeBSD,
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so we did not have to test all potential error cases.”
While it is true that the vast amount of validation
that should go into an independant TCP model is not
necessary, it is our experience that there is a possibility
of many bugs even when the network stack code does
not appear to be modified. The manual approach used
to modify global variables and their references means
there is room for human error; a variable or a reference
to a variable might not be changed correctly or may be
missed altogether, resulting in unforseen and possibly
hard to predict behaviour. We found many of these bugs
before we had finished the global parser (see section 3.3).

The FreeBSD/OMNET++ project did not investi-
gate using different real world network stacks in simu-
lation. The other projects discussed in this section save
NCTUns were the same in this regard: the approach
was specific to one network stack or operating system.
This paper presents a general way of using real world
network stacks in simulation and validates the existing
stacks. The architecture and design of our approach is
described next, in section 3.

3 ARCHITECTURE AND DESIGN

NSC is designed as two distinct objects that communi-
cate through a well defined interface. There is an ns-2
agent implementing an ns-2 API which forms the trans-
port protocol in the simulator: this means the agent
will be connected to another agent and instructed to
send data. The agent is responsible for instantising and
interacting with the other part of NSC, the shared li-
brary. The shared library contains the network stack in
question as well as supporting code. NSC also has one
other component which is used during the build process.
The global parser programmatically changes references
to global variables.

A high level diagram of ns-2 with NSC appears in
Figure 3. Further details of the components in the dia-
gram and the global parser are described in the following
sections.

ns−2 Network Simulator

ns−2 Agent for NSC
Stack

Support

FreeBSD Shared Library

Other Shared Libraries

Figure 1: Interaction with Multiple Network Stacks

3.1 Simulator integration: an ns-2 agent

The ns-2 agent first loads the correct shared library con-
taining the requested network stack and initialises it.
The agent is responsible for routing messages between
the simulator and the network stack that resides in a
shared library. The simulation script and simulated ap-
plication perform actions that require communicating
with the network stack. The network stack will com-
municate with the agent by informing the agent to send
packets or set timers.

Existing TCP agents in ns-2 model a single TCP
connection. They implicitly connect when the first data
is written. No actual data is sent over the simulated
connection; only a number of bytes is specified in each
application send.

This simple model means an underlying network
stack needs special management. The interface to the
network stacks allows creation of an arbitrary number
of sockets which perform the usual socket operations:
connect, listen, accept, write, read and close. To work
the same way as the existing ns-2 agents the NSC agent
initially creates one socket to listen on. Another is
created to connect to a remote host if the agent is ever
instructed to connect. Whenever an attempt is made to
read data, an attempt is made to accept a connection
from the listening socket. If this succeeds, another socket
is created that will be used for reading data in the future.

An API is exposed to scripts that allows setting
specific IP addresses and netmasks and listening on
specific ports. However, to keep maximum compatibility
with existing scripts, the NSC agent can be created such
that IP addresses are automatically allocated based on
the ns-2 node identifier. Port numbers are fixed and
connection is triggered when the first data is sent.

3.2 The shared library

The shared library contains the network stack along with
supporting code that implements the interface necessary
to communicate with the simulator. Shared libraries
must be used instead of static libraries because shared
libraries provide namespaces for the symbols contained
within. For example, FreeBSD and OpenBSD have a
routine called tcp input used during TCP processing.
If the network stacks were statically linked into the
simulator, this symbol name along with others would
clash and cause errors.

The shared library is made of three parts. The C++
simulator interface is required to communicate with the
simulator. This is a C++ class that is created via the
only function exported to the simulator; a create stack

function. The network stack itself is contained in the
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shared library. Support routines are also created to
expose functionality to the C++ interface.

There is an important separation of the C++ in-
terface and the support routines. The support routines
only include headers from the network stack and noth-
ing from the system C library. This is required because
when compiling the FreeBSD network stack on Linux,
for example, there are clashes between the Linux C li-
brary include files and the include files in the FreeBSD
kernel.

There is a shared library for each different stack.
Each shared library has its own set of code to create
and manage sockets. To interact with a network stack,
applications generally communicate through the BSD
sockets API. This is not available at a kernel level, so
a sockets API needs to be implemented on a per-stack
basis. The socket operations all need to be non-blocking
because the simulator is completely single threaded.
This has not been a problem in practice as every protocol
implementation in kernel space encountered does not
require blocking.

3.3 The global parser

Using real world network stacks means that handling
multiple instances of each network stack is potentially a
large hurdle. Network stacks are designed to be used on
their own, there is normally no allowance for multiple
instances of network stacks. An exception to this rule
is the FreeBSD Network Stack Virtualization project
(Zec 2003), but this is not part of core FreeBSD; it is
distributed as kernel patches.

The need to support multiple network stacks can
be solved in two ways. Forking the process or loading
a completely new shared library for each network stack
is one solution. Another is to change global variables so
each network stack has it’s own copy of them. The first
solution is simple to implement and does not require
changing existing source code, meaning the chance of
inadvertently adding an error is small. It suffers from a
scalability problem however, as forking or loading shared
libraries has a large memory and CPU cost. Changing
global variables is more efficient but also more error
prone. Doing so by hand is a large amount of work and
requires significant effort to keep the network stack up
to date.

The FreeBSD Network Stack Virtualization project
solves the issue by manually changing the network stack
to aggregate the global variables into one “virtualiza-
tion” structure. A pointer to this structure can then
be passed through the kernel as a function parame-
ter which specifies which network stack is active. The
method which it took is neither robust nor maintainable
enough for NSC.

It is possible to change global variable definitions and
references programmatically. Because network stacks
are written in C code, some filter which runs over the
C code and understands the global variables and how
to change them is possible. Originally attempts at
multiple search and replaces or creating Perl scripts
failed because of the many complexities that arise when
programmatically analysing C source code. A program
that uses the compiler-compiler tools Bison and Flex
was created for use in NSC. Referred to as the “global
parser”, the program understands C well enough to
replace global variables and global variable definitions
correctly while leaving the surrounding code the same.
It understands local variables shadowing global ones as
well as static local variables.

The global parser reads in a list of variables to
change on startup. This means there must be some way
of selecting which global variables need to be replaced
without missing any which are important. The global
parser solves this problem by having a mode of operation
where it outputs every global and static local variable
encountered. It is then possible to go over the list and
manually select the symbols needed.

4 VALIDATION

The amount of code developed for the Network Simula-
tion Cradle is small. One of the reasons for this was to
minimise the chance of inadvertently making the ner-
work stack perform abnormally. This section presents
a comparison of traces produced from simulation and
from a test network. Because NSC produces traces from
a real network stack, it is possible to compare traces
between simulation and a test network of real comput-
ers on a packet-by-packet basis to look for differences;
section 4.1 details this approach. A higher level analysis
of the difference in goodput found is then presented in
section 4.2. The following sections concentrate on Linux
and FreeBSD, OpenBSD was found to have very similar
results to that of FreeBSD.

4.1 Packet trace comparisons

NSC can output packet traces in tcpdump format
(Jacobson, Leres, and McCanne 2004) which can be
compared to traces captured on a test network at the
same location in the topology. By normalising the traces
with tcpnorm (Jansen 2004) the traces can be compared
directly by comparing the output of tcpdump or by
graphs generated by tcptrace (Ostermann 2004).

Figure 2 shows examples of time sequence graphs
comparing TCP traces in simulation using FreeBSD in
the Network Simulation Cradle and a trace captured
from the test network. The bottom line on the graphs
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shows the sequence number that has been acknowledged
to. The top line is the bottom line plus the size of the
receivers advertised window. The small vertical lines
with arrows at both ends indicate data segments. Each
graph shows the first second of slow start over a link with
a round trip time (RTT) of 200ms and a bandwidth of
2Mb/s. There is only one difference in the two graphs:
in the simulated version the first data packet sent out
has the PUSH flag set, indicated by a diamond shape on
the graph. This difference is created by the applications
that write to the TCP socket; the PUSH flag indicates
that there is no more data to send at the time the
packet was created in BSD derived TCP stacks such as
FreeBSD and OpenBSD.

The same graphs can be shown for Linux to illus-
trate that differences between TCP implementations.
Figure 3 shows same same scenario but using Linux
2.4.27 instead of FreeBSD. The TCP PUSH flag again
is different during this trace due to differences between
the simulated application and the application used on
the test network. There is also a slight difference in tim-
ing of packets that is created by the processing delay
on the real machine which is not present in simulation.

Comparison of packet traces with tcpdump

The graphical views presented in the previous section do
not show all the necessary detail needed to accurately
compare two packet traces. By looking at the differences
in the output of the tcpdump command changes in packet
sizes, TCP options, and timing can be observed. We
compare traces for both Linux and FreeBSD in the same
scenario as presented in figures 2 and 3.

* Linux
The first five packets generated are exactly the same

expect for a small difference in the time they are received.
Differences of one millisecond are found which are due
to the model of the physical network; there is variation
in the laboratory test network that is not present in
simulation. This makes a small difference to the packets
generated: the TCP time stamp options sometimes differ
by one. The unit used for time stamps in the case of
Linux is jiffies, which has a granularity of 10milliseconds.
The difference in time stamp is sporadic; for packets
six to eight it differs, but is in sync for the next three
packets. Measuring ping times on the test network
showed that due to the use of software routers and end
hosts, there was a standard deviation of 2.2 ms over
150 ping packets of 64 bytes each. Such variation is not
present in simulation.

During periods of no loss the traces are very similar.
Packet timings are within 2 ms of each other. Though
there is the occasional small difference in packet flags,
the traces stay in sync.

* FreeBSD
The exact same packet sequence can be seen in

FreeBSD for the first 76 packets. The packets are identi-
cal apart from some having the TCP time stamp slightly
different, which only ever differs by one. A difference
occurs when an acknowledgement is sent sooner in the
laboratory test which makes the two streams somewhat
out of sync.

* Conclusions
There are many variables which affect the exact se-

quence of packets that are output by both stacks. How
the network driver works makes a difference in some
cases. It was found in Linux that allocating different
amounts of memory for the packet container in the kernel
(skbuff ) meant the initial window size offered in TCP
packets changed. The modelling of the application is
also important, how applications make use of blocking
versus non-blocking IO makes a difference. Effort was
made to make the simulation the same as the laboratory
machines, but there are still some differences outstand-
ing. It is unlikely there is anything wrong with the inner
workings of the network stacks; all evidence encountered
shows the differences to come from external factors: the
simple network driver model and application model in
particular.

4.2 Higher level analysis

Higher level analysis shows the differences in packet
traces are indicative of only a small difference in mea-
sured goodput. The comparisons in section 4.1 do not
analyse many facets of TCP. Performing more complex
tests and comparing total goodput over a long period
gives a higher level view on whether the TCP imple-
mentations in NSC are performing as they do on a real
network.

Table 1 in section 1 showed the differences between
ns-2’s TCP in simulation and measurements from TCP
implementations on a test network. A similar table
is presented here, but with the results of simulations
performed with NSC included.

The NSC results in Table 2 are run in the same
conditions as their ns-2 counterparts and are again av-
eraged over 100 runs with only the random seed differing
from run to run. The largest difference found between
NSC and laboratory tests is 4%. In the case of Linux
with SACK disabled, there is a difference of less than
1%. This is an example of a scenario that ns-2’s TCP
implementations do not model correctly yet the Network
Simulation Cradle is able to report performance very
close to what is measured on a real network. The dif-
ferences found here are because of the slight variations
between a real and simulated network and differences in
a real and simulated application. Each stack responds
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Figure 3: Time Sequence Graphs of Simulated and Real Linux

to these variations differently, explaining the range of
one to four percent changes in measured goodput.

Table 2: Comparative Mean TCP Throughput with 5%
Bidirectional Loss

TCP Implementation Goodput (kb/s)

OpenBSD 3.5 113.2
NSC: OpenBSD 3.5 109.0

Linux 2.4.27 208.6
NSC: Linux 2.4.27 204.9

Linux 2.4.27, No SACK 193.7
NSC: Linux 2.4.27 No SACK 192.7

FreeBSD 5.2.1 162.8
NSC: FreeBSD 5.2.1 156.5

5 PERFORMANCE

This section reports onmeasurements of the performance
of the Network Simulation Cradle, both in running time
and memory usage. We compare simulations run with
ns-2’s FullTcp agent with network stacks in the Network
Simulation Cradle. The measurements were run on
an Athlon XP 1800+ with 512MB SDRAM running
FreeBSD 5.3. ns-2’s New Reno agent was also tested
for performance. The results were largely similar to
FullTcp, varying by 5% at most. For the sake of brevity,
only the results of FullTcp are presented in the following

sections, as its performance results are representative
of ns-2’s TCP implementations.

Compiler optimisations are enabled for building ns-
2 and the simulation cradle network stacks. Linker
optimisations are also enabled for the shared libraries
in NSC.

5.1 Time performance

Various factors could influence how long it takes to sim-
ulate a specific situation. Initially, we look at varying
the number of nodes in a simulation, then look at in-
creasing the simulated time for a small number of nodes.
To test the per-packet overhead this simulation is then
reproduced with a smaller segment size. An analysis of
these results follows in section 5.1.4.

5.1.1Time to simulate n nodes

In this particular situation we look at simulating a grow-
ing number of nodes communicating over a bottleneck
link in a classic barbell topology. Each simulation has 60
seconds of traffic. At the start of a simulation half of the
nodes connect to the other half. The connection goes
through a single, limited link. There is a unidirectional
TCPtransfer of data over each connectionuntil the end of
the simulation. The bottleneck link is 2Mb with 10ms la-
tency. Anagnostakis, Greenwald, and Ryger (2002) re-
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port this type of simulation scenario to be by far the
most common scenario simulated.

The results of these simulations are summarised
in Figure 4. The difference in time between ns-2 and
most of the NSC agents in this graph is largely due to
initialisation. Figure 4 shows that simulating a large
number of NSC stacks takes time, but the overhead over
ns-2 doing the same with it’s TCP implementations is
small. NSC requires extra initialisation which explains
the extra time in this scenario. There is a one-off cost
of loading a shared library which can be seen by the
initial increase in real time when the number of nodes
is around five. The initialisation of each NSC stack
takes some time; the cost of this differs between each
network stack. lwIP is simplistic and requires very little
initialisation, while FreeBSD, OpenBSD and Linux have
more complicated processes. The slowdown by two to
three times is probably acceptable in many cases.
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There is only a small data transfer in the scenario re-
ported by figure 4. How quickly the Network Simulation
Cradle can process data is examined next.

5.1.2Larger amounts of traffic

Rather than increasing the number of nodes, this test
has a static number of nodes but increases the length of
the time simulated. The simulation setup is otherwise
the same as in the previous section. This shows how
the simulator scales with respect to the volume of data
going through it. Figure 5 shows the results of this set
of simulations.

Thedifference in time foundwhen the simulated time
is small is due to the overhead of loading the different
shared libraries. The shared libraries containing the
OpenBSD and Linux network stacks havemany symbols,
up to ten times as many as the libraries containing
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Figure 5: Simulation times for longer simulations

FreeBSD and lwIP. This is due to the operation of the
parser, in some cases it will create many new symbol
names which need to be linked by the dynamic linker
when first loading the shared library.

Figure 5 shows that ns-2’s TCP implementations
can be a lot faster than NSC stacks used for simulation.
OpenBSD is nearly six times slower than FullTcp in
this scenario. The next section tests how much of this
slowdown is a result of the per-packet overhead.

5.1.3Per-packet overhead

To test per-packet overhead, the simulation described
in section 5.1.2 was re-run with one modification: a
smaller maximum segment size (MSS) was used. For
the NSC network stacks, the maximum transfer unit
of the interface is set to a lower value, while for ns-2’s
FullTcp the segment size is reduced. They are set so the
maximum transfer unit (MTU) is reduced from 1500 to
576 in both cases. By comparing this simulation to the
previous one per-packet overhead can be seen.

Table 3 shows the results of this simulation. Plotting
a graph shows linear trends like figure 5. It is interesting
to compare the ratio of real time to cpu time for the two
MTUsizes simulated. Thedifference between simulating
with the different MTUs gives an idea of the overhead
due to packet processing. An interesting result here is
that FullTcp suffers the greatest slowdown in this case.

5.1.4Analysis

The CPUperformance differs between ns-2’sTCP imple-
mentations and using the Network Simulation Cradles
TCP implementations in ns-2. In the situations studied
here, we find the ns-2 FullTcp agent to be up to six
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Table 3: Per-packet Simulation Performance

TCP Implementation Time ratio Change
MTU 576 MTU 1500

NSC: Linux 2.4.27 70.906 144.64 2.04x
NSC: OpenBSD 3.5 62.711 139.14 2.21x
NSC: FreeBSD 5.2.1 97.951 190.88 1.94x
ns-2: FullTcp 327.97 837.60 2.55x

times faster than simulating with an NSC network stack.
While this is a significant slowdown, for many simula-
tions this will be acceptable. The results in figure 4 and
table 3 show that in some situations the difference in
performance between native ns-2 simulations and using
NSC is closer than reported in figure 5. When creating
ns-2 trace files such as Nam traces (Estrin et al. 1999),
the difference is small due to the large slowdown created
by writing the trace to disk.

NSC network stacks work as a drop-in replacement
for the existing ns-2 TCP agents. This means it is
possible to design and run simulations using the existing
agents then use the NSC stacks for validation purposes
if the simulation scenario is too large to be run using
the NSC stacks.

The previous sections showed that using NSC slows
down simulations with ns-2 but do not analyse the
impact on memory usage. When using NSC, the real
packets are passed through the simulator which has
the potential for much greater use of memory. Each
network stack also allocates some memory for internal
buffers and structures. The amount of memory used
when simulating with ns-2 and NSC is reported in the
next section.

5.2 Memory performance

The virtualmemory size of ns-2when simulating a simple
scenario similar to that described in section 5.1.1 grows
linearly as the number of stacks instantiated grows.
There is a large difference in size between OpenBSD
and Linux and the rest of the NSC stacks and ns-2
agents due to a large .bss (uninitialised data) section
in the OpenBSD and Linux shared libraries. The parser
described in section 3.3 will in some circumstances create
many uninitialised variables. Much of this will never
be paged in and will not use physical memory; in the
case of OpenBSD only around 25 of 90 megabytes of
memory was in the resident set when 20 stacks were
used in this test. In larger tests this memory is more
likely to be used.

The data structure used in ns-2 to describe packets
does not contain packet payload during normal operation
of the ns-2 TCP agents. The Network Simulation Cradle

stacks require the real packet data so when NSC stacks
are being simulated the packet data is attached to ns-
2’s packet structure. This means that when there is a
complex situation with many router buffers the memory
usage will grow due to the extra overhead required per
packet in the simulator. To test this situation a larger
simulation was run and the memory usage recorded.

Table 4 displays the virtual memory size at the end
of the simulation when there are 300 stacks instantiated
and sending and receiving data in a complex topology.
The memory usage is a lot higher when using NSC than
with the base ns-2 TCP agents. Using different ns-
2 TCP implementations did not change the amount of
memory used from that reported in Table 4 significantly.

Table 4: Memory Usage During Larger Simulation

TCP Implementation Virtual memory size (MB)

NSC: Linux 2.4.27 134.224
NSC: OpenBSD 3.5 113.032
NSC: FreeBSD 5.2.1 60.064
NSC: lwIP 0.7.2 39.400
ns-2: Newreno 26.524

The performance figures presented in this section
report on a largely unoptimised use of real world network
stacks in simulation. Memory usage could be reduced
by using only enough memory per packet to contain
the packet headers as the data payload is unused. This
would also mean that only the header needs to be copied,
currently there is a large amount of redundant memory
copying done due to copying the entire packet contents
into a buffer during transmission and receipt of a packet.
The stacks need to be profiled to gain further insight into
their performance characteristics. This is part of the
ongoing development of the Network Simulation Cradle.

6 CONCLUSIONS

This paper describes the Network Simulation Cradle
which makes network stacks from real world operating
systems available to simulation. While we describe in-
tegration of the cradle with the network simulator ns-2,
the approach is general and the current framework could
be integrated with other network simulators. NSC cur-
rently includes the network stacks from the operating
systems Linux, FreeBSD and OpenBSD and the network
stack designed for embedded systems, lwIP.

NSC has been validated by directly comparing with
results from a test network. Results are very close
to those measured on the real network, while in some
cases ns-2’s TCP models produce significantly different
results. Comparing packet traces by hand from the test
network to traces generated from simulation shows that
the network stacks used in NSC produce different results
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from each other but are very close to the same stack
used on the test network.

We show that there is a performance impact of using
real network stacks in simulation, though large simula-
tions are still able to be run in reasonable time. Using
NSC with ns-2 requires little change to current simula-
tion scripts meaning this approach is complementary to
existing simulations performed with ns-2. It is possible
to design simulation scenarios using the current proto-
col implementations in ns-2 then replace them with the
more accurate protocol implementations found in the
Network Simulation Cradle.

Future work will involve adding further network
stacks to the simulation cradle such as newer Linux
versions (the 2.6 series of the Linux kernel) and any
other open source network stacks of note. Performance
can also be increased by reducing the amount of memory
used by the packets in the simulator and reducing the
amount of copying done.
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