
The graphs to the left show the first second of slow start
and connection establishment measured on the sender
side with a 2Mb/s link and a round trip time of 200ms.
The sender and receiver computers each have the same
operating system installed.

Slow start is a good example of how implementations
differ in a simple aspect of TCP. Linux attains the most
throughput by not delaying acknowledgements during
this period. It also dynamically grows the advertised
window, a feature that is not found in the other
implementations measured here. FreeBSD 5.3 is the
only stack to start with an initial window larger than two
MSS (maximum segment size) meaning RFC3390 is
implemented and enabled in this stack. OpenBSD is
by far the slowest stack studied in this situation for two
reasons. The initial window is only one MSS, meaning
the delayed ack timer needs to expire before an
acknowledgement is generated. The delayed ack timeout
is longer than in the other stacks studied, it is set to
300ms rather than the 200ms measured on other stacks.
It is also evident that the advertised window used by
OpenBSD is very small, meaning the connection
becomes limited by the bandwidth-delay product in many
scenarios.

MEASURED COMPARATIVE PERFORMANCE OF TCP STACKSMEASURED COMPARATIVE PERFORMANCE OF TCP STACKS
Sam Jansen and Anthony McGregor

Network Research Group

This poster shows findings of TCP (Transmission Control Protocol) performance of a range of network
stacks. We have found that there are significant differences between the TCP implementations found
in Linux, FreeBSD, OpenBSD, Solaris and Windows XP. Measurements are performed on an isolated
testbed network that allows installing and configuring a new operating system image in minutes.

80000

60000

40000

20000

0
 1.000 s800.000 ms600.000 ms400.000 ms200.000 ms0 s

sequence offset

relative time

Windows XP

SYN

80000

60000

40000

20000

0
 1.000 s800.000 ms600.000 ms400.000 ms200.000 ms0 s

sequence offset

relative time

FreeBSD 5.3

SYN

80000

60000

40000

20000

0
 1.000 s800.000 ms600.000 ms400.000 ms200.000 ms0 s

sequence offset

relative time

Linux 2.6.10

SYN

80000

60000

40000

20000

0
 1.000 s800.000 ms600.000 ms400.000 ms200.000 ms0 s

sequence offset

relative time

Solaris 10

SYN

80000

60000

40000

20000

0
 1.000 s800.000 ms600.000 ms400.000 ms200.000 ms0 s

sequence offset

relative time

OpenBSD 3.5

SYN

We measured the performance of TCP in two scenarios:
when faced with bidirectional random loss and when
the reverse path is congested. In these tests the operating
system used for sending and receiving is the same. In
both tests the TCP socket buffer sizes are increased so
the bandwidth-delay product is not an issue. All other
operating system settings are left at their defaults. The
results in this section are in kilobits per second.

Bidirectional random loss
A FreeBSD-based software router was configured to
drop 5% of packets independent of the direction of the
packets. A throughput test was run for one minute and
the bytes received were recorded. For each stack, this
test was repeated 100 times with both machines being
rebooted between each test. The rate of data arriving
at the receiver is summarised in the table below.

100Mb/s
<1ms

100Mb/s
<1ms

100Mb/s
<1ms

100Mb/s
<1ms

2Mb/s
50ms

Measured flow

Reverse flow

Reverse path congestion
In this scenario a single TCP stream doing a bulk transfer
is measured and the router buffer size is set small enough
that a single TCP stream transferring data in the opposite
direction is able to create congestion which results in
some of the acknowledgement packets of the measured
stream to be dropped.

This scenario is depicted below. The routers R1 and
R2 are FreeBSD machines using Dummynet to limit
the traffic. This basic topology is used throughout the
tests on this poster though the specifics change.

TCP Implementation

Linux 2.4.27
FreeBSD 5.3
FreeBSD 5.2.1
Windows XP
OpenBSD 3.5

Min

1220
1128
1099

906
1273

Mean

1296
1242
1205
1024
1352

Max

1375
1366
1289
1152
1438

SD

33.3
52.8
48.6
58.5
40.4

TCP Implementation

Linux 2.6.10
Linux 2.4.27
FreeBSD 5.3
FreeBSD 5.2.1
Windows XP
OpenBSD 3.5

Min

164.38
153.82
136.77
128.74

89.90
63.84

Mean

213.98
207.42
176.20
162.81
137.31
117.98

Max

287.67
248.70
225.01
219.01
191.00
166.82

SD

22.75
22.86
17.11
19.56
21.67
22.11

WAND Emulation Network
The WAND Network Research Group has built a network
of 24 machines dedicated to network testing. Machines
are configured so there is a control network connecting
the machines to the control machine and an emulation
network which is configured by changing patch panels.
Each machine has one Ethernet card connected to the
control network, and one Ethernet card connected to
the emulation network, which has four ports in the case
of router machines. This
allows arbitrary network
topologies to be created
between machines at a
maximum speed of
100Mbit/s.

All machines are connected
through one central switch
to a control machine as well
as having serial
connections to the same
machine. To simulate link
delay and bandwidth limits,
FreeBSD Dummynet
routers are used.

Analysing TCP traces by hand showed two pieces of
unexpected behaviour: Windows XP oversending data
and FreeBSD generating bad selective
acknowledgements.

Windows XP will send data outside of the receivers
advertised window during periods of loss. This was
observed when the receiver was sending selective
acknowledgements. The behaviour looks to be a
deliberate attempt at optimising TCP throughput but
violates the TCP specification. The example to the right
is measured on the sender side of the connection. By
the time the packets have arrived at the receiver the
advertised window will sometimes have grown such that
many of the erroneous packets are within the window.
However, the oversent packets will often be retransmitted
as the annotated example shows.

When FreeBSD 5.3 is used as a receiving stack with
Windows sending, a small selective acknowledgement
bug is triggered. Some packets contain selective
acknowledgements for incorrect sequence numbers.
This bug was been reported to the FreeBSD developers
and has subsequently been fixed.

SSSSSSSSSSSSSS

R

SSSSSSSSSSSSSSSSSSS

3R

SSSSSSSSSSS
Bad SACK
ranges

FreeBSD 5.3 SACK bug

SS

3

RRRRR

SSSSSSSSS

3

RRRRR

R

R

SSSSSSS

3

2

1
S

3

2

1
S

3

2

1S

3

2

1
S

3

2

1S

3

2

1S

3

2

1S

3

2

1

S

3

2

1
S

3

2

1
S

3

2

1

R

R

R

R

R

R

R

S

3
2

1

S
3

2
1

S

3

2

1

S

3

2

1
S

3

2

1
S

3

2

1
S

3

2

1
S

3

2

1
S

3

2

1
S

3

2

1
S

3

2

1
S

3

2

1
S

3

2

1
S

3

2

1
S

3

2

1
S

3

2

1
S

3

2

1S

3

2

1S

3

2

1S

3

2

1S

3

2

1S

3

2

1S

3

2

1S

3

2

1

3

R

R

R

R

R

R

R
R

R

R

R

R

S

3

2

1S

3

2

1S

3

2
1

S

3

2
1

S

3

2
1

S

3

2
1

S

3

2
1S

3

2

1S

3

2
1S

3

2

1S

3

2
1S

3

2

1S

3

2
1S

3

2

1S

3

2
1S

3

2

1S

3

2
1S

3

2

1S

3

2
1S

3

2

1S

3

2
1S

3

2

1S

3

2
1S

3

2

1S

3

2
1S

3

2

1S

3

2
1S

3

2

1S

3

2
1S

2

1

3

R

R

S

2
1SS

Erroneous packets

Retransmissions

Windows XP oversending

TCP slow start Bugs and non-conformant behaviour

Performance

? The graphs on this poster
...Are TCP time sequence graphs generated by tcptrace
(http://www.tcptrace.org). The y-axis shows the sequence number while
the x-axis shows the time. The green/bottommost line shows the sequence
number that has been acknowledged to. The topmost/blue line shows the
receivers advertised window. Small black lines with arrows show data
packets. Some of these have a diamond shape around them, indicating
the PUSH flag is set. Vertical cyan lines show SACK blocks.

More information about this research including contact
details for the authors can be found at the WAND
website: http://www.wand.net.nz
Poster designed in Macromedia Freehand MX by Sam Jansen, 2005.

TCP performance during reverse path congestion

TCP performance during bidirectional random loss

